
UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 1

1

5.1 Stream Classes Structure
In C++ there are number of stream classes for defining various streams related with
files and for doing input-output operations. All these classes are defined in the
file iostream.h. Figure given below shows the hierarchy of these classes.

1. ios class is topmost class in the stream classes hierarchy. It is the base class
for istream, ostream, and streambuf class.

2. istream and ostream serves the base classes for iostream class. The
class istream is used for input and ostream for the output.

3. Class ios is indirectly inherited to iostream class using istream and ostream.
To avoid the duplicity of data and member functions of ios class, it is declared as
virtual base class when inheriting in istream and ostream as

class istream: virtual public ios

{

};

class ostream: virtual public ios

{

};

4. The _withassign classes are provided with extra functionality for the
assignment operations that’s why _withassign classes.

http://www.geeksforgeeks.org/c-plus-plus/
https://media.geeksforgeeks.org/wp-content/uploads/20190509103056/Heirarchy-of-Stream-Classess-in-iostream.h.jpg

UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 2

2

Facilities provided by these stream classes.

1. The ios class: The ios class is responsible for providing all input and output
facilities to all other stream classes.

2. The istream class: This class is responsible for handling input stream. It
provides number of function for handling chars, strings and objects such as get,
getline, read, ignore, putback etc.

Example:

#include <iostream>
using namespace std;

int main()
{
 char x;

 // used to scan a single char
 cin.get(x);

 cout << x;
}
Input:
g
Output:
g

3. The ostream class: This class is responsible for handling output stream. It
provides number of function for handling chars, strings and objects such as write,
put etc..
Example:

#include <iostream>

using namespace std;

int main()
{
 char x;

 // used to scan a single char
 cin.get(x);

 // used to put a single char onto the screen.
 cout.put(x);
}
Input:

g

UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 3

3

Output:

g

4. The iostream: This class is responsible for handling both input and output
stream as both istream class and istream class is inherited into it. It provides
function of both istream class and istream class for handling chars, strings and
objects such as get, getline, read, ignore, putback, put, write etc..
Example:

#include <iostream>
using namespace std;

int main()
{

 // this function display
 // ncount character from array
 cout.write("geeksforgeeks", 5);
}

Output:

geeks

5. istream_withassign class: This class is variant of istream that allows object
assigment. The predefined object cin is an object of this class and thus may be
reassigned at run time to a different istream object.
Example:To show that cin is object of istream class.

#include <iostream>
using namespace std;

class demo {
public:
 int dx, dy;

 // operator overloading using friend function
 friend void operator>>(demo& d, istream& mycin)
 {
 // cin assigned to another object mycin
 mycin >> d.dx >> d.dy;
 }
};

int main()
{
 demo d;
 cout << "Enter two numbers dx and dy\n";

UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 4

4

 // calls operator >> function and
 // pass d and cin as reference
 d >> cin; // can also be written as operator >> (d, cin)

;

 cout << "dx = " << d.dx << "\tdy = " << d.dy;
}
Input:

4 5

Output:

Enter two numbers dx and dy

4 5

dx = 4 dy = 5

6. ostream_withassign class: This class is variant of ostream that allows object
assigment. The predefined objects cout, cerr, clog are objects of this class and
thus may be reassigned at run time to a different ostream object.
Example:To show that cout is object of ostream class.

#include <iostream>

using namespace std;

class demo {
public:
 int dx, dy;

 demo()
 {
 dx = 4;
 dy = 5;
 }

 // operator overloading using friend function
 friend void operator<<(demo& d, ostream& mycout)
 {
 // cout assigned to another object mycout
 mycout << "Value of dx and dy are \n";
 mycout << d.dx << " " << d.dy;
 }
};

int main()
{
 demo d; // default constructor is called

UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 5

5

 // calls operator << function and
 // pass d and cout as reference
 d << cout; // can also be written as operator << (d,

cin) ;
}
Output:

Value of dx and dy are

4 5

Opening a File

A file must be opened before you can read from it or write to it.
Either ofstream or fstream object may be used to open a file for writing. And ifstream
object is used to open a file for reading purpose only.

Following is the standard syntax for open() function, which is a member of fstream,
ifstream, and ofstream objects.

void open(const char *filename, ios::openmode mode);

Here, the first argument specifies the name and location of the file to be opened and
the second argument of the open() member function defines the mode in which the
file should be opened.

Sr.No Mode Flag & Description

1 ios::app

Append mode. All output to that file to be appended to the end.

2 ios::ate

Open a file for output and move the read/write control to the end of the file.

3 ios::in

Open a file for reading.

4 ios::out

Open a file for writing.

5 ios::trunc

UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 6

6

If the file already exists, its contents will be truncated before opening the file.

You can combine two or more of these values by ORing them together. For example
if you want to open a file in write mode and want to truncate it in case that already
exists, following will be the syntax −

ofstream outfile;

outfile.open("file.dat", ios::out | ios::trunc);

Similar way, you can open a file for reading and writing purpose as follows −

fstream afile;

afile.open("file.dat", ios::out | ios::in);

Closing a File

When a C++ program terminates it automatically flushes all the streams, release all
the allocated memory and close all the opened files. But it is always a good practice
that a programmer should close all the opened files before program termination.

Following is the standard syntax for close() function, which is a member of fstream,
ifstream, and ofstream objects.

void close();

Writing to a File

While doing C++ programming, you write information to a file from your program using
the stream insertion operator (<<) just as you use that operator to output information
to the screen. The only difference is that you use an ofstream or fstream object
instead of the cout object.

Reading from a File

You read information from a file into your program using the stream extraction
operator (>>) just as you use that operator to input information from the keyboard.
The only difference is that you use an ifstream or fstream object instead of
the cin object.

UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 7

7

Read and Write Example

Following is the C++ program which opens a file in reading and writing mode. After
writing information entered by the user to a file named afile.dat, the program reads
information from the file and outputs it onto the screen −

#include <fstream>

#include <iostream>

using namespace std;

int main () {

 char data[100];

 // open a file in write mode.

 ofstream outfile;

 outfile.open("afile.dat");

 cout << "Writing to the file" << endl;

 cout << "Enter your name: ";

 cin.getline(data, 100);

 // write inputted data into the file.

 outfile << data << endl;

 cout << "Enter your age: ";

 cin >> data;

 cin.ignore();

 // again write inputted data into the file.

 outfile << data << endl;

 // close the opened file.

 outfile.close();

 // open a file in read mode.

 ifstream infile;

 infile.open("afile.dat");

 cout << "Reading from the file" << endl;

 infile >> data;

 // write the data at the screen.

 cout << data << endl;

 // again read the data from the file and display it.

 infile >> data;

 cout << data << endl;

UNIT – V WORKING WITH FILES

PROF. YOGESH GAIKWAD TEACHING HOURS 06 TOTAL MARKS 08 8

8

 // close the opened file.

 infile.close();

 return 0;

}

When the above code is compiled and executed, it produces the following sample
input and output −

$./a.out

Writing to the file

Enter your name: Zara

Enter your age: 9

Reading from the file

Zara

9

Above examples make use of additional functions from cin object, like getline()
function to read the line from outside and ignore() function to ignore the extra
characters left by previous read statement.

File Position Pointers

Both istream and ostream provide member functions for repositioning the file-
position pointer. These member functions are seekg ("seek get") for istream
and seekp ("seek put") for ostream.

The argument to seekg and seekp normally is a long integer. A second argument can
be specified to indicate the seek direction. The seek direction can be ios::beg (the
default) for positioning relative to the beginning of a stream, ios::cur for positioning
relative to the current position in a stream or ios::end for positioning relative to the
end of a stream.

The file-position pointer is an integer value that specifies the location in the file as a
number of bytes from the file's starting location. Some examples of positioning the
"get" file-position pointer are −

// position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);

// position n bytes forward in fileObject

fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);

// position at end of fileObject

fileObject.seekg(0, ios::end);

